NOAH deals with the education of early-stage researchers (ESRs) in a multidisciplinary chemical research program within the area of functional molecular containers, encapsulation processes and their applications with the possibility to end up with a PhD degree. The proposed training network aims to bring in a great variety of scientific attributes to 10 selected ESRs, ranging from the experimental organic and inorganic synthesis to computational chemistry. Photo- and electro-chemistry, MS/gas-phase chemistry, X-ray diffraction and optical spectroscopy techniques will be also included in the scientific formation and development of the recruited ESRs. The trainees will also receive education in complementary and transferable skills through attendance to local and network-wide dedicated training seminars (e.g. dissemination, communication, organization, governance, ethics...). The training program includes the exposure of the ESRs to chemical research carried out in the non-academic sector or in a technological centre by means of full recruitment or short stage secondments in one of the three chemical European companies or the technological centre operating at very different levels. ESRs will also gain insight in the transfer process of knowledge from academia to industry and other complementary soft-skills. The proposed ITN constitutes an ideal framework to acquaint ESRs, with a great variety of scientific skills, experimental techniques, soft-skills and technologies.

CONSORTIA

Network of Functional Molecular Containers with Controlled Switchable Abilities

Timeline | 04/2018 to 09/2022

Budget | 2,525,640 €

ICIQ's Budget | 516,402 €

ICIQ People | P. Ballester Research Group

Call | H2020-MSCA-ITN-2017

SUMMARY

NOAH deals with the education of early-stage researchers (ESRs) in a multidisciplinary chemical research program within the area of functional molecular containers, encapsulation processes and their applications with the possibility to end up with a PhD degree. The proposed training network aims to bring in a great variety of scientific attributes to 10 selected ESRs, ranging from the experimental organic and inorganic synthesis to computational chemistry. Photo- and electro-chemistry, MS/gas-phase chemistry, X-ray diffraction and optical spectroscopy techniques will be also included in the scientific formation and development of the recruited ESRs. The trainees will also receive education in complementary and transferable skills through attendance to local and network-wide dedicated training seminars (e.g. dissemination, communication, organization, governance, ethics...). The training program includes the exposure of the ESRs to chemical research carried out in the non-academic sector or in a technological centre by means of full recruitment or short stage secondments in one of the three chemical European companies or the technological centre operating at very different levels. ESRs will also gain insight in the transfer process of knowledge from academia to industry and other complementary soft-skills. The proposed ITN constitutes an ideal framework to acquaint ESRs, with a great variety of scientific skills, experimental techniques, soft-skills and technologies.

CONSORTIA

Project coordinator

Local training

- Scientific knowledge
 - Chemistry Courses
 - Technical Courses
 - Specific Knowledge
 - Multidisciplinary Training

- Soft Skills
 - Continuing Training
 - Teaching
 - Language Courses

Network-wide training

- **NOAH Schools**
 - Supramolecular Chemistry and Supramolecular Crystallography
 - Electrochemistry, Photochemistry and Photonics
 - Kinetic and Thermodynamic Characterization of Supramolecular Complexes

- **Industry days**
 - Team, Financial and Time management
 - Career Development Plan
 - Formulation development in industry
 - Management of R&D proposals

- **Peer-review activities**
 - Critical Thinking

Follow us on social media!

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 765297.