The growing resistance to many antibiotics and the emergence of multidrug-resistant bacteria calls for the development of alternative antibacterial therapies. Currently, bacterial drug resistance is the leading cause of morbidity and mortality in patients with cystic fibrosis and hospital-acquired lung infections. **LIGHT4LUNGS** will develop new treatment for bacterial lung infections using inhalable light sources that excite bacterial endogenous photosensitisers (porphyrins), killing the bacteria via the photodynamic effect (local production of reactive cytotoxic oxygen). The treatment will be safe for host tissues and effective against drug-resistant pathogens. Research involves the development of inhalable luminescent particles, the method for delivery to the lungs, and evaluation of the treatment parameters in relevant clinical models.

"Light4Lungs addresses the problem of antimicrobial resistance in the treatment of chronic lung infections"

SUMMARY

<table>
<thead>
<tr>
<th>Timeline</th>
<th>12/2019 to 11/2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Budget</td>
<td>3,493,625 €</td>
</tr>
<tr>
<td>ICIQ's Budget</td>
<td>372,500 €</td>
</tr>
</tbody>
</table>

CONSORTIA

- **Project coordinator**
 - ICIQ People | Palomares Research Group
 - Website | https://light4lungs.eu
 - Call | H2020-FETOPEN-2018-2019-2020-01-RIA

CONSORTIA

- **ICIQ**
 - Overall Budget | 3,493,625 €
 - ICIQ's Budget | 372,500 €

CALL

SUMMARY

- The growing resistance to many antibiotics and the emergence of multidrug-resistant bacteria calls for the development of alternative antibacterial therapies. Currently, bacterial drug resistance is the leading cause of morbidity and mortality in patients with cystic fibrosis and hospital-acquired lung infections. **LIGHT4LUNGS** will develop new treatment for bacterial lung infections using inhalable light sources that excite bacterial endogenous photosensitisers (porphyrins), killing the bacteria via the photodynamic effect (local production of reactive cytotoxic oxygen). The treatment will be safe for host tissues and effective against drug-resistant pathogens. Research involves the development of inhalable luminescent particles, the method for delivery to the lungs, and evaluation of the treatment parameters in relevant clinical models.

"Light4Lungs addresses the problem of antimicrobial resistance in the treatment of chronic lung infections"

WORK PLAN

- **Obj. 1: Design**
 - WP1: Selection and development of models
 - WP2: Action spectrum determination

- **Obj. 2: Synthesis, formulation & characterization**
 - WP3: Synthesis & Characterization of light emitter
 - WP4: Aerosol formulation

- **Obj. 3: In vitro and in vivo assessment of biocompatibility, toxicity & efficacy**
 - WP5: In vitro studies aerosol efficacy & biocompatibility
 - WP6: Aerosol irradiation in lung tissue culture & preclinical in vivo infection models

- WP7: Project Coordination & Management
- WP8: Dissemination and exploitation

Follow us on our social media!

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862453.